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Severa l  theore t i ca l  [1-3] and exper imenta l  [4] s tudies have been made of the d iamagnet ic  per turbat ions  
dur ing expansion of a conducting ma te r i a l  in a magnet ic  field. These  studies have re la ted  e i ther  to 
superconduct ing media  [1], or  to a s t rong magnet ic  field which has a cons iderable  effect  on the motion of 
the medium [2], or  to a weakly ionized media ,  in which the effects  of f ield var ia t ion  in the medium can be 
neglec ted  [3]. In the following w e examine  the expansion of a substance with finite conductivity in a weak 
(having no effect on the motion of the medium) magnet ic  field with account for  the effects  of field attenuation 
within the expanding mat te r .  This  occurs  in the d iagnost ics  of the state of the ma t t e r  of a spark at a l a s e r  
focus on the bas is  o fd i amagne t i c indue t ions igna l s  [4], The re la t ions  obtained in the following appear to be 
appl icable  for es t imat ing  the diamagnet ic  p rope r t i e s  of m e t e o r  t ra i l s .  

The method of solution of this p rob lem may be of some interes t ;  there fore ,  in the following the solution is 
obtained by s eve ra l  techniques for di f ferent  basic geomet r i e s .  

1. Magnet ic - f ie ld  penet ra t ion  into a medium may involve two poss ib le  mechan i sms- -wave  and diffusive. 

Fo r  nonre la t iv i s t i c  ve loc i t i es  of the medium,  wave effects  play a negligibly smal l  ro le  in attenuation of the 
constant  ex te rna l  magnet ic  field. The t ime for  the diffusion of a magnet ic  field to the dis tance a in a medium with 
conductivi ty a is t ~ a a 2 c  - 2  (c is the speed of light). It wilI be shown la te r  that the magnet ic  field is weakened by the 
c u r r e n t s  induced by the d isplaced f ield in a conductor t rave l ing  with veloci ty  v. In all ca ses  examined below the 
cu r ren t s  flow through a thin layer  of the medium,  whose thickness 6 ~ c2/47ro~ is much l e s s  than the d imension r 0 of 
the reg ion  occupied by the conductor.  The diffusion of the magnet ic  field to this d is tance  takes place [5] in the t ime 

t N ~5~c-2 N 6 / 4nv  <~ ro / 4nv  ~ �9 , 

where  ~- is the c h a r a c t e r i s t i c  t ime defining the ra te  of d i sp lacement  of the magnet ic  field. 

This inequali ty makes  it poss ib le  to neglec t  the effects  of magne t i c - f i e ld  lag during change of the cu r ren t s  
which give r i s e  to the field (i. e . ,  we can cons ider  the magnet ic  field to be quasi  stat ionary) and we cons ider  only the 
Lorentz  fo rce  as the factor  causing the e l ec t r i c  cur ren t ,  so that j = ~ c - l [ v x  H] (i. e . ,  we neglect  the e l ec t r i c  field, 
whose cur l  is propor t ional  to the t ime de r iva t ive  of the magnet ic  field). 

2. Let  us examine  the motion of a plane wave in the  magnet ic  field H. In this sect ion we take as the coordinate  
sys tem the r ight-hand t r ihedron of vec to r s  ix, y, z]. The wave t r ave l s  along the y -ax i s  and its p a r a m e t e r s  a re  the 
ve loc i ty  v(y) and the conductivity ~(y) of the medium. The quant i t ies  v and ~ a re  constant in the plane perpendicular  to 

the y -ax i s .  

We f i r s t  note that if in the plane perpendicu la r  to the y -ax i s  and in te rsec t ing  it at the point Y0 there  flows a 
cu r r en t  in the posi t ive  d i rec t ion  of the x - a x i s  with surface  density J ,  then the magnet ic  field of this cu r r en t  equals 
2~rJe-* and is d i rec ted  in the negat ive d i rec t ion  of the z -ax i s  for y < Y0 and in the posi t ive  d i rec t ion  for y > Y0. 

Returning to the plane wave, we note that if the magnet ic  field is d i rec ted  para l le l  to the veloci ty  of the medium,  
then there  is no in terac t ion  of the wave with the field. We there fore  examine  the case  in which the magnet ic  field has 
the component  H 0 perpendicu la r  to the veloci ty  of the medium. We assume that this component  is d i rec ted  in the 
posi t ive  d i rec t ion  of the z -ax is .  Cur ren t s  will  obviously flow along the x -ax i s  and they a re  cons idered  posi t ive if they 
flow in the posi t ive  d i rec t ion  of the x-ax is .  The cu r r en t  induced at the point y is j(y) = Hzav/c.  In this case  H z = H0 + 
+ H1, where  H1 is the field induced by the cu r r en t s  j. Cons ider ing  the di f ferent  d i rec t ion  of the field f rom the cu r r en t s  

flowing in the y '  < y and y '  > y planes,  we obtain 
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2~ 2~ ' 
H~ : - 7 i (y') dy" - -  -~ -  i (y') dy" 

~00 y 

and, consequently,  the equation for j(y) has the form 

y co  

;<.,= § f Tf 
- -CO y 

Its solution is the function 

w(y)---- - -  

cHo e -W(u} 
I" ('J) = - ~ -  w (y) t + e - w ( ' ' ~  ' 

co 

4~r v (y) W (y) = I w (y') dy" 
62 

Y 

In this case the magnet ic  field component perpendicular  to the velocity is 

e-w(y) 
Hz (y) ~ 2H0 i -}- e -W(-:~) " 

Let us examine the case in which the quanti ty av, r ema in ing  posit ive,  inc reases  monotonical ly  from very  smal l  
values  for large posit ive y up to large values for large negative y (so that W(-~o) >> 1). Then 

cl io  e_W(y ) l ' ( y ) ~ " ~ - w ( y )  , g z ( y ) - . ~ , 2 t t o e  - W ( ! )  �9 

For  large negative y the quant i t ies  j(y) and Hz(y) are  exponentially smal l  because of the factor exp [-W(y)]. This  
is associated with the fact that the magnetic  field is attenuated in the depth of the wave and cu r r en t s  are  not excited. 
For  large posit ive y the quanti ty j(y) is smal l  because  of the factor cry/e, i . e . ,  because of the smal l  conductivity or 
velocity the cu r r en t s  cannot be very strong. For  these same y the quantity H z ~ 2H 0, which can be considered a 
consequence of the combinat ion of the or iginal  and displaced magnetic fields. The cu r ren t s  reach maximum values at 
the point where 

dw (y) 
dy ~ we (y) ~ 0 . 

3. Similar results are obtained when examining a cylindrical wave in a magnetic field parallel to its axis. We 
first examine a cylindrical wave of infinite length. 

It is well known that the field of an infinitely long cylindrical layer of radius r, thickness dr, in a flow with 
current density j(r) perpendicular to the generator is equal to zero outside this layer, while within the layer the field 
is parallel to the cylinder axis and equal to dH = 4rc-I j (r)dr. 

If the layer  has the conductivity r and the cu r ren t s  are  induced as it expands with the velocity v in the external  
magnet ic  field H, then j = o-vc-lH. The magnet ic  field of this cu r r en t  within the cyl inder  will be opposite to the 
d i rec t ion  of the externa l  field. Therefore  in the cyl indr ical  expansion wave the equation for the cu r r en t s  j(r) has the 
form 

/(r)--~(r)v(r)~Hc [ o---~-4~ I /.(r,)dr,} . (3.1) 
r 

Its solution is 

The magnetic field in this motion is 

cHo 
/ ( r ) : ~ - ' w ( r ) e x p  [--W(r)] . 
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H (r) = Ho exp [-- W (r)l 

This  example is in te res t ing  in that in the case of finite radius  of the wave (crv= 0 for r = r0) the magnetic field 
outside the wave does not change, although it is displaced within the wave. However, this is not so if the wave has 
large (in compar i son  with the radius) but finite length l. Such a cyl inder  c rea tes  at large (in compar i son  with the 
dimensions)  d is tances  a magnet ic  field which is the same as that of a magnetic  dipole with the moment  

ro 
nl 

MBII ~" ~ l r~'i (r) dr.  
o 

(3.2) 

If the quantity a v  grows sufficiently rapidly with reduct ion of r ,  then the function j(r) has a sharp maximum 
at the point r*,  at which 

dy) 

and is exponential ly smal l  for smal l  r.  Then 

rl  rn 

f r * f ( r ) d r , ~ r * 2  f [ ( r ) d r .  
o o 

F r o m  (3.1), taken at the point r = 0, where j(r) = 0, we obtain 

r~ 
l / (r) dr - -  CH~ 

4r~ " 
o 

Consequently 

Me//~. 1/4 Holr*% (3.3) 

4. A somewhat more  complicated resu l t  is obtained in the case in which the magnetic  field is directed 
perpendicular  to the axis of a cy l indr ica l  expansion wave. Let us examine the case in which the wave has the sharp 
boundary r0(t), the velocity v of the medium is di rected along the radius  and, like the conductivity or, depends only on 
the d is tance  to the axis of the cyl inder .  In the coordinate sys tem adopted in section 3, we cons ider  the external  
magnetic  field H 0 to be directed along the z-axis  in the posit ive direct ion,  the cyl inder  axis is d i rec ted  along the 
x-axis ;  the cu r r en t s  are  considered posit ive if they flow in the posit ive d i rec t ion of the x-axis .  We introduce the polar  

coordinates  r and qo(0 <_ ~0 _ 27r) in the zy-plane (figure). 

The magnet ic  field component inducing the cu r r en t  is 

Hey = - - H  e s i n  q~.  
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T h e  m a g n e t i c  f ie ld  at  the poin t  ( r ,  q) owing  to the c u r r e n t s  f lowing th rough  the point  ( r ' ,  ~ ' )  is  ( the no ta t ions  a r e  c l e a r  
f r o m  the f igure)  

Thus  

2 . , r '  
di l l  = -~- I (r , q~') ~ dr "d(p" 

2 r' r --  r' cos (~' --  (p) 
( d H a ) ~ - - " ~ - f ( r ' ,  ~')u c o s ~ t  = r "  

2 i '  ~ , -- r' r (r --  V) H~(r ,  (p)=--H0sinq~ -- dr" d~t'/(r', ~') r~_l_r,.~_2rr, cos(cp_(p, ) , 
0 o 

i (r, (p) = - -  z (r) v (0 c-l//~ (r, q~) . (4.3.) 

If  we s e e k  the so lu t ion  of (4.1) in the f o r m  

1 (r, r = 1 (r) sin tp , 

then the equa t ion  fo r  the  func t ion  j (r)  has the f o r m  

0 r 

(4.2) 

F o r  an a r b i t r a r y  dependence  of the funct ion (~v on the c o o r d i n a t e s  this  equa t ion  cannot  be s o l v e d  in g e n e r a l  f o rm .  
An a p p r o x i m a t e  so lu t ion  of th is  equa t ion  is  ob ta ined  s i m i l a r l y  to that  p r e s e n t e d  in the fo l lowing  s ec t i on  fo r  the m o s t  
i n t e r e s t i n g  p r a c t i c a l  c a s e  of  a s p h e r i c a l  expans ion  w a v e  in a m a g n e t i c  f ield.  

5. L e t  us e x a m i n e  a s p h e r e  of r a d i u s  r0(t), expanding  in the m a g n e t i c  f i e ld  H 0. The  v e l o c i t y  v of the m e d i u m  is  
d i r e c t e d  a long  the r a d i u s  and,  l ike  the conduc t iv i ty  or, depends  only on the d i s t a n c e  to the c e n t e r  of the sphe re .  We 
i n t r o d u c e  the s p h e r i c a l  c o o r d i n a t e  s y s t e m  (r ,  3 ,  ~v) with o r i g i n  at the c e n t e r  of the s p h e r e  and d i r e c t  the z - a x i s  a long 
the m a g n e t i c  f ie ld .  It  is  shown in [6] that i f  a c u r r e n t  wi th  s u r f a c e  d e n s i t y  i 0 s in  ~ (the c u r r e n t  is  c o n s i d e r e d  pos i t i ve  if  
i t  f lows  c lockwise )  f lows  th rough  a s p h e r e  of r a d i u s  R a long the l ines  ~ = cons t  the m a g n e t i c  f ie ld  of such  a s p h e r e  has 
the c o m p o n e n t s  

8~ iocos~ [ t , r < R  
I t ~ = - -  3 ~ i t (l=t/rp, r > R  ' 

H a =  3 - - l h ( R I r ) 3 ,  r > R  

R e t u r n i n g  to the  e x a m i n a t i o n  of the expanding  s p h e r e ,  we f i r s t  note  that  s ince  the v e l o c i t y  is r a d i a l  the c u r r e n t  
g ive s  r i s e  only to the H~ componen t ,  and if j ( r ,  ~) ~ s i n ~  then H~ ~ s in  ~ as  we l l ,  i . e . ,  we can  s e e k  the so lu t ion  of 
the p r o b l e m  of c u r r e n t  exc i t a t i on  in such  a s p h e r e  in the f o r m  j ( r ,  ~) = j ( r ) s i n , ) .  

I f  we e x a m i n e  the c u r r e n t  at the d i s t a n c e  r f r o m  the c e n t e r  of the s p h e r e ,  then al l  the c u r r e n t s  f lowing in the 
l a y e r s  i n s ide  the s p h e r e  y i e ld  a con t r i bu t i on  to H~:  

r 

... 4~ sin ~) t' H t~;-- - -  ~ ~ r'3 i(r') dr ' .  
o 

T h e  e x t e r n a l  l a y e r s  y i e ld  

ro  
,~, 8nsinO f 

I~,~'  = ~ ~ i (r') d , ' .  
F 

C o n s e q u e n t l y  
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r r o 

Ha=_sinf f{Ho+ 4 ~  l ] ( r ) radrSY~  
0 r 

Since 

] ( r ,  ~ )  = - - o  ( r )  v ( r ) c - 1 / ' / a  , 

the equation for j(r) has the form 

r r 

z(r) v(r) fH 4g �9 

0 r 

(5.1) 

Jus t  as in the cyl indr ica l  case ,  (5.1) cannot be solved for an a rb i t r a ry  dependence of (r and v on r.  

By us ing the formulas  given in [6] we can wri te  the potential  of the magnet ic  field outside the sphere in the form 

4 ~sin~t' . 
A~- -  3 ~ ~ l(r) r dr. 

0 

Comparing this express ion  with the formula  for the field of a magnetic dipole with the moment  A~o = Mr -2 s in ~, 
we find that the effective magnet ic  moment  of the expanding sphere is 

4 
Me/Y = ~ T  I i(r) r*dr " 

o 

(5.2) 

The absence of an exact solution for j(r) prevents  exact calculat ion of Meff; however, in cer ta in  cases  it is 
possible  to obtain approximate es t imates  of this quantity. 

a) Smal l  veloci t ies  and conductivi t ies.  The integral  equation (5.1) for j(r) can be compared with the differential  
equation 

d 

If w(r)r  << 1 for all  r(0 < r < r0), then by neglect ing smal l  t e rms  in (5.3) we obtain 

d ~" d l ' ( r )  7 - (5.4) 

The solution of (5.4) is the function 

] (r) = w (r) (Cl + C~r -3) �9 

For  r = r 0 we obtain from (5.1) 

r0 ro 
Clio i 3 

l.(ro)=W(ro){.~__~_ 3.~o3 S r l.(r)dr}, [ d /(r)'] .. , 
o o 

F r o m  these equations we find 

ro 

C1 = ~H~ C~ = ~tt~ I r3w (r) dr . ~  C1ro s 
0 

Consequently 
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H0c 
r~ 

MeU = ~ j ~ (.1 ~ (.) e d r  , (5.5) 
0 

which  c o i n c i d e s  e x a c t l y  wi th  the r e s u l t  of [3]. 

b) L a r g e  v e l o c i t i e s  and eonduc t i v i t i e s .  If the quant i ty  w g r o w s  r ap id ly  wi th  r e d u c t i o n  of  r ,  so that  

rw (r) ~> i 

fo r  r < r 0, then by ana logy  with  the p lane  c a s e  we can  conc lude  that  the c u r r e n t  f lows only in a n a r r o w  r e g i o n  and 
d e c r e a s e s  exponen t i a l l y  with r e d u c t i o n  of  r .  In th is  c a s e  we can w r i t e  

r0 

r 

w h e r e  the f a c t o r  c~ ~ 1 and the s lowly  v a r y i n g  f u n c t i o n f ( r )  a p p e a r  in connec t i on  with the p o s s i b l e  in f luence  of the 
g e o m e t r y .  Consequen t l y ,  the c u r r e n t  as  a funct ion  of  r has  a m a x i m u m  n e a r  the point  r* ,  w h e r e  

d ~  
~ r  +aw2=O �9 

If this  m a x i m u m  is  su f f i c i en t ly  n a r r o w ,  then the i n t e g r a l  in (5.5), de f in ing  the m a g n e t i c  m o m e n t ,  can  be 
r e p l a c e d  by 

ro 

r*3f  [ ( r ) d r  . 
o 

Since  in the e a s e  in ques t i on  the funct ion  j (r)  is  exponen t i a l ly  s m a l l  fo r  s m a l l  r ,  we obta in  f r o m  (5.1), t aken  at 
the point  r = 0, 

so that  

ro r~ 

0 . ~  . . . . .  ~" ~ I I o - - , ' ~ "  e / ( r ) d r ,  o r  / ( r ) d r ~ . ~ - ~ I f o e ,  
o o 

M e l t  = 1/.,. Hor*" . ( 5 . 6 )  

T h i s  f o r m u l a  is va l id  under  two condi t ions :  

1) the va lue  of r *  depends  weak ly  on the unknown c~; 

2) the width of  the peak  of the funct ion j (r)  is  m u c h  l e s s  than r*.  

S a t i s f a c t i o n  of  the f i r s t  condi t ion  depends  on the  c o n c r e t e  f o r m  of the func t ion  w(r).  To def ine  the second  
cond i t ion  we w r i t e  

r~ 

n e a r  r*  in the f o r m  

r0 

- ~ g r -  / , 
r* 

w h e r e  the peak  ha l f -wid th  6 m u s t  be c o n s i d e r a b l y  l e s s  than r* ,  i . e . ,  
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- - - : . ' ]  <.* ; ( 5 . 7 )  

for  r = r* the ra t io  w ' / w  2 = - a ,  and consequent ly (5.7) can be wri t ten  in the fo rm 

w "  (r*)  l ' , ,  t . 
,* [ - 2~w" (~'~) - TG-~y-j >> 

c) In the case  in which the quantity w is suff icient ly la rge  so that even at the boundary of the sphere  w' + ~w > O, 
then the cu r r en t  densi ty  d e c r e a s e s  monotonical ly  f rom the boundary into the depth of the sphere ,  and in this case we 
must  r ep lace  r* by r 0 in the  formulas  o f c a s e b ) .  In this case  we obtain the known formula  defining the magnet ic  moment  
of an ideal ly  conducting sphere  expanding ia a magnet ic  field [1]. 

6. The method developed above was used to compare  the theore t ica l  calculat ions  with the exper imenta l  data of 
[4]. In this case  the hydrodynamic and thermodynamic  c h a r a c t e r i s t i c s  of the expanding medium were  calculated on the 
bas is  of the blast  model  [7]. The magnitude of the conductivi ty was calcula ted using the formula* 

~ =~.os.~o~n,o ( ~  -,;%~p { - p) 6.~o .}, (6.1) 

Here  T ~ is the a i r  t e m p e r a t u r e  in ~ and P0 is the a i r  densi ty at s tandard conditions.  

Since the ini t ial  energy r e l e a s e  volume has an elongated form,  whose longitudinal d imension (l ~ 0.1 cm) is 
cons iderab ly  l a rge r  than the t r a n s v e r s e  dimension,  and s ince the magnet ic  field is longitudinal,  in this case  we must  

use the r e s u l t s  of sect ion 3. 

It was found that up to t ~ 10 -7 sec the expanding medium can be cons idered  infinitely conducting. The magnet ic  
moment  can be calculated using (3.3), in which r* should be rep laced  by r0--the radius  of the shock wave front. 

At l a t e r  t imes  the radius  of the reg ion  through which the c u r r e n t s  flow becomes  less  than r 0. We can as sume  
that it is at just  these t imes  that the magnet ic  moment  growth stops. In the case  in which this assumption is valid the 
max imum magnet ic  moment  Mma x is a lso  defined by (3.3), in which r* is now replaced  by r l ,  defined by the condition 

[ r l w  ( r l ) ] r ,=ro  = I . (6.2) 

If at these t imes  the state of the gas at the shock wave front is s t i l l  desc r ibed  by the Sedov solution, then (6.2) 

can be wri t ten in the fo rm (here and h e r e a f t e r  all  quant i t ies  a re  in the CGSE system) 

0 . 9  �9 l 0  -7 r l z  y '  e x p  ( - - 5  �9 t012 / z} ~ l ,  z ~ E / p0r~ . 

Neglect ing the slowly varying preexponent ia l  fac tor ,  we obtain the solution of (6.2): z ~ 5 . 1 0  lz or  r l  = Ep- t l0 -12 /  

5. Consequently 

M m a  x = 1 / ~ H o l r  ~ - -  5 �9 l O - 1 ~ H o E l P o  I . 

Substituting the numer i ca l  values of the quanti t ies ,  we obtain for the ease  examined in [4] 

M m a  x N 5 �9 1 0 - 5 H o .  

It is not poss ible  to give a m o r e  exact  e s t ima te  of Mma x, s ince the state of the a i r  in the region behind the shock 
wave front  is not desc r ibed  by the b las t  model  of Sedov (for example ,  even a rough account for heat conduction a l t e r s  

s ignif icant ly  [7] the t e m p e r a t u r e  dis t r ibut ion pat tern  in the in ternal  regions) .  

The exper imenta l ly  measu red  value of Mma x ~ 10-SH0 �9 A poss ible  r eason  for this d i sc repancy  is that not all 
the l a s e r  f lash energy  is r e l ea sed  in the luminous gas breakdown spark. It appears  that a cons iderable  par t  of the 
energy  is e i the r  sca t t e red  or passes  through the spark  region (in this connection we note that the e s t ima te  given above 
is obviously low, since i nc r ea se  of the magnet ic  moment  c l ea r ly  continues some t ime af ter  separa t ion  of the cu r r en t s  

*Private communication of E. V. Pletnikov. His formula (6.1) describing the conductivity of air in the temperature 

range (5-20) �9 I03r agrees with the experimental data presented in [8]~ 
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f rom the shock wave front).  

The na ture  of the dependence  of Mma x on the energy  r e l e a s e d  in the spa rk  and the gas  dens i ty  co inc ides  with the 
e xpe r imen t a l  re la t ion .  

During this study s e v e r a l  f rui t ful  d i s c u s s i o n s  were  held with Yu. A. Medvedev and V. V. Ivanov and the author 
wishes  to thank them for  the i r  comment s .  
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